Using the Higher Order Singular Value Decomposition (HOSVD) for Video Denoising
نویسندگان
چکیده
We present an algorithm for denoising of videos corrupted by additive i.i.d. zero mean Gaussian noise with a fixed and known standard deviation. Our algorithm is patch-based. Given a patch from a frame in the video, the algorithm collects similar patches from the same and adjacent frames. All the patches in this group are denoised using a transform-based approach that involves hard thresholding of insignificant coefficients. In this paper, the transform chosen is the higher order singular value decomposition of the group of similar patches. This procedure is repeated across the entire video in sliding window fashion. We present results on a well-known database of eight video sequences. The results demonstrate the ability of our method to preserve fine textures. Moreover we demonstrate that our algorithm, which is entirely driven by patch-similarity, can produce mean-squared error results which are comparable to those produced by state of the art techniques such as [5], as also methods such as [11] that explicitly use motion estimation before denoising.
منابع مشابه
Postreconstruction filtering of 3D PET images by using weighted higher-order singular value decomposition
BACKGROUND Positron emission tomography (PET) always suffers from high levels of noise due to the constraints of the injected dose and acquisition time, especially in the studies of dynamic PET imaging. To improve the quality of PET image, several approaches have been introduced to suppress noise. However, traditional filters often blur the image edges, or erase small detail, or rely on multipl...
متن کاملThe $\ell_\infty$ Perturbation of HOSVD and Low Rank Tensor Denoising
The higher order singular value decomposition (HOSVD) of tensors is a generalization of matrix SVD. The perturbation analysis of HOSVD under random noise is more delicate than its matrix counterpart. Recent progress has been made in Richard and Montanari [2014], Zhang and Xia [2017] and Liu et al. [2017] demonstrating that minimax optimal singular spaces estimation and low rank tensor recovery ...
متن کاملA New Truncation Strategy for the Higher-Order Singular Value Decomposition
We present an alternative strategy to truncate the higher-order singular value decomposition (T-HOSVD). An error expression for an approximate Tucker decomposition with orthogonal factor matrices is presented, leading us to propose a novel truncation strategy for the HOSVD, which we refer to as the sequentially truncated higher-order singular value decomposition (ST-HOSVD). This decomposition r...
متن کاملAnalysis and compression of six-dimensional gyrokinetic datasets using higher order singular value decomposition
Higher order singular value decomposition (HOSVD) is explored as a tool for analyzing and compressing gyrokinetic data. An efficient numerical implementation of an HOSVD algorithm is described. HOSVD is used to analyze the full six-dimensional (three spatial, two velocity space, and time dimensions) gyrocenter distribution function from gyrokinetic simulations of ion temperature gradient, elect...
متن کاملMultilinear Singular Value Decomposition for Structured Tensors
The Higher-Order SVD (HOSVD) is a generalization of the Singular Value Decomposition (SVD) to higher-order tensors (i.e. arrays with more than two indices) and plays an important role in various domains. Unfortunately, this decomposition is computationally demanding. Indeed, the HOSVD of a third-order tensor involves the computation of the SVD of three matrices, which are referred to as "modes"...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011